GCE AS/A level

0977/01
||| || ||||||||||||||||||||||||||||||||||||
S16-0977-01

MATHEMATICS - FP1
 Further Pure Mathematics

A.M. FRIDAY, 24 June 2016

1 hour 30 minutes

ADDITIONAL MATERIALS

In addition to this examination paper, you will need:

- a 12 page answer book;
- a Formula Booklet;
- a calculator.

INSTRUCTIONS TO CANDIDATES

Use black ink or black ball-point pen.
Answer all questions.
Sufficient working must be shown to demonstrate the mathematical method employed.

INFORMATION FOR CANDIDATES

The number of marks is given in brackets at the end of each question or part-question.
You are reminded of the necessity for good English and orderly presentation in your answers.

1. Differentiate $\frac{x^{2}}{x+1}$ from first principles.
2. The transformation T in the plane consists of an anticlockwise rotation through 90° about the origin followed by a translation in which the point (x, y) is transformed to the point $(x+1, y+2)$.
(a) Determine the 3×3 matrix which represents T.
(b) Find the fixed point of T.
3. Given that

$$
S_{n}=\sum_{r=1}^{n} r^{2}(r+1)
$$

obtain an expression for S_{n} in terms of n, giving your answer as a product of four linear factors.
4. The complex numbers z_{1}, z_{2} are given by

$$
z_{1}=-\sqrt{3}+\mathrm{i} ; \quad z_{2}=1+\mathrm{i}
$$

(a) Determine the modulus and the argument of each of z_{1}, z_{2}, giving exact values of the moduli and giving the arguments in terms of π.
(b) The complex number w is given by

$$
w=\frac{z_{1}^{2}}{z_{2}} .
$$

Using your results from (a), or otherwise, determine w in the form $a+\mathrm{i} b$, giving a, b correct to two decimal places.
5. The matrix \mathbf{M} is given by

$$
\mathbf{M}=\left[\begin{array}{rrr}
2 & 5 & \lambda \\
0 & \lambda & -1 \\
\lambda & 2 & 1
\end{array}\right]
$$

(a) (i) Show that

$$
\operatorname{det} \mathbf{M}=4-3 \lambda-\lambda \beta^{\beta} .
$$

(ii) Hence show that \mathbf{M} is singular when $\lambda=1$ and is not singular for any other real values of λ.
(iii) Show that the following system of equations is consistent and find the general solution.

$$
\left[\begin{array}{rrr}
2 & 5 & 1 \\
0 & 1 & -1 \\
1 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
3 \\
1 \\
1
\end{array}\right]
$$

(b) Suppose now that $\lambda=-1$. By first finding the adjugate matrix of \mathbf{M}, determine the inverse matrix \mathbf{M}^{-1}.
6. Consider the cubic equation

$$
a x^{3}+b x^{2}+c x+d=0 .
$$

Given that the product of two of the roots is equal to 1 , show that

$$
\begin{equation*}
d^{2}-b d=a^{2}-a c . \tag{6}
\end{equation*}
$$

7. The sequence $x_{1}, x_{2}, x_{3}, \ldots$ is generated by the relationship

$$
x_{n+1}=2 x_{n}-n+1 \text { where } x_{1}=3 .
$$

Use mathematical induction to prove that

$$
x_{n}=2^{n}+n
$$

for all positive integers n.
8. The function f is defined on the domain $\left(0, \frac{\pi}{2}\right)$ by

$$
f(x)=x^{\sin x}
$$

(a) Obtain an expression for $f^{\prime}(x)$.
(b) Given that the graph of f has one stationary point, show that its x-coordinate lies between 0.35 and 0.36 .
9. The complex numbers z and w are represented, respectively, by points $P(x, y)$ and $Q(u, v)$ in Argand diagrams and

$$
w=(z+2 \mathrm{i})^{2} .
$$

(a) Obtain expressions for u and v in terms of x and y.
(b) The point P moves along the line $y=x-1$. Find the equation of the locus of Q.

